Biopolymer-Based Nanoparticles for Drug/Gene Delivery and Tissue Engineering
نویسندگان
چکیده
There has been a great interest in application of nanoparticles as biomaterials for delivery of therapeutic molecules such as drugs and genes, and for tissue engineering. In particular, biopolymers are suitable materials as nanoparticles for clinical application due to their versatile traits, including biocompatibility, biodegradability and low immunogenicity. Biopolymers are polymers that are produced from living organisms, which are classified in three groups: polysaccharides, proteins and nucleic acids. It is important to control particle size, charge, morphology of surface and release rate of loaded molecules to use biopolymer-based nanoparticles as drug/gene delivery carriers. To obtain a nano-carrier for therapeutic purposes, a variety of materials and preparation process has been attempted. This review focuses on fabrication of biocompatible nanoparticles consisting of biopolymers such as protein (silk, collagen, gelatin, β-casein, zein and albumin), protein-mimicked polypeptides and polysaccharides (chitosan, alginate, pullulan, starch and heparin). The effects of the nature of the materials and the fabrication process on the characteristics of the nanoparticles are described. In addition, their application as delivery carriers of therapeutic drugs and genes and biomaterials for tissue engineering are also reviewed.
منابع مشابه
Gold and Iron Oxide Nanoparticle-Based Ethylcellulose Nanocapsules for Cisplatin Drug Delivery
The present study is aimed at the overall improvement in the efficacy, reduced toxicity and enhancement of therapeutic index of cisplatin. Nanocapsules of cisplatin containing ethylcellulose have been prepared using solvent evaporation technique under ambient conditions. The prepared nanocapsules were used for controlled drug release of anticancer agents with gold and iron oxide nanoparticles. ...
متن کاملFabrication and evaluation of gelatin nanoparticles for delivering of anti - cancer drug
The aim of present study was to prepare gelatin nanoparticle for drug and gene delivery applications. These nanoparticles were prepared by two-step desolvation method. The body distribution of colloidal drug delivery systems was mainly influenced by two physicochemical properties namely particle size and surface characteristics. The influence of several factors on the fabrication process includ...
متن کاملPLGA Nanoparticles for Ultrasound-Mediated Gene Delivery to Solid Tumors
This paper focuses on novel approaches in the field of nanotechnology-based carriers utilizing ultrasound stimuli as a means to spatially target gene delivery in vivo, using nanoparticles made with either poly(lactic-co-glycolic acid) (PLGA) or other polymers. We specifically discuss the potential for gene delivery by particles that are echogenic (amenable to destruction by ultrasound) composed...
متن کاملPreparation and characterization of friendly colloidal Hydroxyapatite based on natural Milk’s casein
Biocompatible hydroxyapatite nanocomposites are biocompatible, biodegradable and nontoxic have been paid many attentions as one of the most suitable vehicle for drug delivery use. Our objective in this work was to prepare and characterize caseins based HA nanocomposite in a colloidal form for drug delivery purposes. Casein biopolymer was firstly extracted from skimmed milk by adding acetic acid...
متن کاملPreparation and characterization of friendly colloidal Hydroxyapatite based on natural Milk’s casein
Biocompatible hydroxyapatite nanocomposites are biocompatible, biodegradable and nontoxic have been paid many attentions as one of the most suitable vehicle for drug delivery use. Our objective in this work was to prepare and characterize caseins based HA nanocomposite in a colloidal form for drug delivery purposes. Casein biopolymer was firstly extracted from skimmed milk by adding acetic acid...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 14 شماره
صفحات -
تاریخ انتشار 2013